References
Al-Karkhi, A. F. M., and W. A. A. Alqaraghuli. 2019. Applied
Statistics for Environmental Science with r. Elsevier Science.
Allaire, JJ, and François Chollet. 2023a. “Keras: R Interface to
’Keras’.” https://CRAN.R-project.org/package=keras.
———. 2023b. “Keras: R Interface to ’Keras’.” https://CRAN.R-project.org/package=keras.
Allaire, JJ, and Yuan Tang. 2023. “Tensorflow: R Interface to
’TensorFlow’.” https://CRAN.R-project.org/package=tensorflow.
Anandarajan, M., C. Hill, and T. Nolan. 2019. Practical Text
Analytics: Maximizing the Value of Text Data. Advances in Analytics
and Data Science. Springer International Publishing.
Biecek, Przemyslaw. 2018. “DALEX: Explainers for Complex
Predictive Models in r” 19: 1–5. https://jmlr.org/papers/v19/18-416.html.
Boulangé, Alex. 2020. “Automl: Deep Learning with
Metaheuristic.” https://CRAN.R-project.org/package=automl.
Burger, S. V. 2018. Introduction to Machine Learning with r:
Rigorous Mathematical Analysis. O’Reilly Media.
Bürkner, Paul-Christian. 2017. “Brms: An
r Package for
Bayesian Multilevel Models Using
Stan” 80. https://doi.org/10.18637/jss.v080.i01.
Bzdok, Danilo, Naomi Altman, and Martin Krzywinski. 2018.
“Statistics Versus Machine Learning.” Nature
Methods 15: 233–34.
Caseli, H. M., and M. G. V. Nunes, eds. 2023. Processamento de
Linguagem Natural: Conceitos, Técnicas e Aplicações Em Português.
BPLN.
Chan, B. K. C. 2015. Biostatistics for Epidemiology and Public
Health Using r. Springer Publishing Company.
Csardi, Gabor, and Tamas Nepusz. 2006. “The Igraph Software
Package for Complex Network Research” Complex Systems: 1695. https://igraph.org.
Donoho, David. 2017. “50 Years of Data Science.”
Journal of Computational and Graphical Statistics 26 (4):
745–66.
Feinerer, Ingo, and Kurt Hornik. 2023. “Tm: Text Mining
Package.” https://CRAN.R-project.org/package=tm.
Fritsch, Stefan, Frauke Guenther, and Marvin N. Wright. 2019.
“Neuralnet: Training of Neural Networks.” https://CRAN.R-project.org/package=neuralnet.
Giorgi, Federico M., Carmine Ceraolo, and Daniele Mercatelli. 2022.
“The r Language: An Engine for Bioinformatics and Data
Science.” Life 12 (5).
Grün, Bettina, and Kurt Hornik. 2023. “Topicmodels: Topic
Models.” https://CRAN.R-project.org/package=topicmodels.
Hothorn, Torsten. 2023. “CRAN Task View: Machine Learning &
Statistical Learning.” https://CRAN.R-project.org/view=MachineLearning.
Hvitfeldt, Emil, Thomas Lin Pedersen, and Michaël Benesty. 2022.
“Lime: Local Interpretable Model-Agnostic Explanations.” https://CRAN.R-project.org/package=lime.
Ihaka, Ross. 1998. “R: Past and Future History.”
Computing Science and Statistics 30: 392–96.
Ihaka, Ross, and Robert Gentleman. 1996. R: A Language for Data
Analysis and Graphics. Journal of Computational and Graphical
Statistics. Vol. 5. 3. Taylor & Francis.
Jalajakshi, V, and A N Myna. 2022. “Importance of Statistics to
Data Science.” Global Transitions Proceedings 3 (1):
326–31.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani.
2023. An Introduction to Statistical Learning: With Applications in
r. 2nd ed. Springer.
Kalyan, Sudhaka. 2018. “Python Vs. R Programming Language.”
International Journal of Management, IT and Engineering 8 (8):
70–79.
Kassambara, Alboukadel, and Fabian Mundt. 2020. “Factoextra:
Extract and Visualize the Results of Multivariate Data Analyses.”
https://CRAN.R-project.org/package=factoextra.
Kuhn, and Max. 2008. “Building Predictive Models in r Using the
Caret Package.” Journal of Statistical Software 28 (5):
1–26. https://doi.org/10.18637/jss.v028.i05.
Kumar, A., and A. Paul. 2016. Mastering Text Mining with r.
Packt Publishing.
Kwartler, T. 2017. Text Mining in Practice with r. Wiley.
Lawson, J. 2014. Design and Analysis of Experiments with r.
Chapman & Hall/CRC Texts in Statistical Science. CRC Press.
Liaw, Andy, and Matthew Wiener. 2002. “Classification and
Regression by randomForest” 2: 18–22. https://CRAN.R-project.org/doc/Rnews/.
Luraschi, Javier, Kevin Kuo, Kevin Ushey, JJ Allaire, Hossein Falaki, Lu
Wang, Andy Zhang, Yitao Li, Edgar Ruiz, and The Apache Software
Foundation. 2023. Sparklyr: R Interface to Apache Spark. https://CRAN.R-project.org/package=sparklyr.
Maechler, Martin, Peter Rousseeuw, Anja Struyf, Mia Hubert, and Kurt
Hornik. 2022. “Cluster: Cluster Analysis Basics and
Extensions.” https://CRAN.R-project.org/package=cluster.
Mailund, T. 2017. Beginning Data Science in r: Data Analysis,
Visualization, and Modelling for the Data Scientist. Apress.
Meyer, David, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel, and
Friedrich Leisch. 2023. “E1071: Misc Functions of the Department
of Statistics, Probability Theory Group (Formerly: E1071), TU
Wien.” https://CRAN.R-project.org/package=e1071.
Ohri, A. 2017. Python for r Users: A Data Science Approach.
Wiley.
Paradis, E. 2020. Population Genomics with r. CRC Press.
Pedersen, Thomas Lin. 2022. “Ggraph: An Implementation of Grammar
of Graphics for Graphs and Networks.” https://CRAN.R-project.org/package=ggraph.
Proellochs, Nicolas, and Stefan Feuerriegel. 2020.
“ReinforcementLearning: Model-Free Reinforcement Learning.”
https://CRAN.R-project.org/package=ReinforcementLearning.
R Project. 2023a. “Conferences on r.” https://www.r-project.org/conferences/.
———. 2023b. “Help on r.” https://www.r-project.org/help.html.
Selivanov, Dmitriy, Manuel Bickel, and Qing Wang. 2023. “Text2vec:
Modern Text Mining Framework for r.” https://CRAN.R-project.org/package=text2vec.
Silge, J., and D. Robinson. 2017. Text Mining with r: A Tidy
Approach. O’Reilly Media.
Silge, Julia, and David Robinson. 2016. “Tidytext: Text Mining and
Analysis Using Tidy Data Principles in r” 1. https://doi.org/10.21105/joss.00037.
Singh, A. K., and D. E. Allen. 2016. R in Finance and Economics: A
Beginner’s Guide. World Scientific Publishing Company.
Spedicato, Giorgio Alfredo. 2017. “Discrete Time Markov Chains
with r” 9. https://journal.r-project.org/archive/2017/RJ-2017-036/index.html.
Stack Overflow. 2023. “R Language Collective on Stack
Overflow.” https://stackoverflow.com/collectives/r-language.
Stan Development Team. 2023. “RStan: The
r Interface to
Stan.” https://mc-stan.org/.
Tahsin, Anika, and Md. Manzurul Hasan. 2020. “Big Data & Data
Science: A Descriptive Research on Big Data Evolution and a Proposed
Combined Platform by Integrating r and Python on Hadoop for Big Data
Analytics and Visualization.” In Proceedings of the
International Conference on Computing Advancements. ICCA 2020. New
York, NY, USA: Association for Computing Machinery.
Thaichon, P., and S. Quach, eds. 2022. Artificial Intelligence for
Marketing Management. 1st ed. Routledge.
Tippmann, Sylvia. 2015. “Programming Tools: Adventures with
r.” Nature 517: 109–10.
Tuffery, S. 2023. “Deep Learning: From Big Data to Artificial
Intelligence with r: Deep Learning for Natural Language
Processing.”
Ushey, Kevin, JJ Allaire, and Yuan Tang. 2023. “Reticulate:
Interface to ’Python’.” https://CRAN.R-project.org/package=reticulate.
Venables, W. N., and B. D. Ripley. 2002. “Modern Applied
Statistics with s.” https://www.stats.ox.ac.uk/pub/MASS4/.
Venables, W., and B. D. Ripley. 2013. S Programming. Statistics
and Computing. Springer New York.
Wickham, Hadley. 2016. “Ggplot2: Elegant Graphics for Data
Analysis.” https://ggplot2.tidyverse.org.
Wickham, H., and G. Grolemund. 2016. R for Data Science: Import,
Tidy, Transform, Visualize, and Model Data. O’Reilly Media.
Wijffels, Jan. 2021. “Doc2vec: Distributed Representations of
Sentences, Documents and Topics.” https://CRAN.R-project.org/package=doc2vec.
Wijffels, Jan, and Kohei Watanabe. 2023. “Word2vec: Distributed
Representations of Words.” https://CRAN.R-project.org/package=word2vec.
Zbicki, R. E., and T. M. dos Santos. 2020. Aprendizado de Máquina:
Uma Abordagem Estatística. 1st ed.