References

Al-Karkhi, A. F. M., and W. A. A. Alqaraghuli. 2019. Applied Statistics for Environmental Science with r. Elsevier Science.
Allaire, JJ, and François Chollet. 2023a. “Keras: R Interface to ’Keras’.” https://CRAN.R-project.org/package=keras.
———. 2023b. “Keras: R Interface to ’Keras’.” https://CRAN.R-project.org/package=keras.
Allaire, JJ, and Yuan Tang. 2023. “Tensorflow: R Interface to ’TensorFlow’.” https://CRAN.R-project.org/package=tensorflow.
Anandarajan, M., C. Hill, and T. Nolan. 2019. Practical Text Analytics: Maximizing the Value of Text Data. Advances in Analytics and Data Science. Springer International Publishing.
Biecek, Przemyslaw. 2018. “DALEX: Explainers for Complex Predictive Models in r” 19: 1–5. https://jmlr.org/papers/v19/18-416.html.
Boulangé, Alex. 2020. “Automl: Deep Learning with Metaheuristic.” https://CRAN.R-project.org/package=automl.
Burger, S. V. 2018. Introduction to Machine Learning with r: Rigorous Mathematical Analysis. O’Reilly Media.
Bürkner, Paul-Christian. 2017. Brms: An r Package for Bayesian Multilevel Models Using Stan 80. https://doi.org/10.18637/jss.v080.i01.
Bzdok, Danilo, Naomi Altman, and Martin Krzywinski. 2018. “Statistics Versus Machine Learning.” Nature Methods 15: 233–34.
Caseli, H. M., and M. G. V. Nunes, eds. 2023. Processamento de Linguagem Natural: Conceitos, Técnicas e Aplicações Em Português. BPLN.
Chan, B. K. C. 2015. Biostatistics for Epidemiology and Public Health Using r. Springer Publishing Company.
Csardi, Gabor, and Tamas Nepusz. 2006. “The Igraph Software Package for Complex Network Research” Complex Systems: 1695. https://igraph.org.
Donoho, David. 2017. “50 Years of Data Science.” Journal of Computational and Graphical Statistics 26 (4): 745–66.
Feinerer, Ingo, and Kurt Hornik. 2023. “Tm: Text Mining Package.” https://CRAN.R-project.org/package=tm.
Fritsch, Stefan, Frauke Guenther, and Marvin N. Wright. 2019. “Neuralnet: Training of Neural Networks.” https://CRAN.R-project.org/package=neuralnet.
Giorgi, Federico M., Carmine Ceraolo, and Daniele Mercatelli. 2022. “The r Language: An Engine for Bioinformatics and Data Science.” Life 12 (5).
Grün, Bettina, and Kurt Hornik. 2023. “Topicmodels: Topic Models.” https://CRAN.R-project.org/package=topicmodels.
Hothorn, Torsten. 2023. “CRAN Task View: Machine Learning & Statistical Learning.” https://CRAN.R-project.org/view=MachineLearning.
Hvitfeldt, Emil, Thomas Lin Pedersen, and Michaël Benesty. 2022. “Lime: Local Interpretable Model-Agnostic Explanations.” https://CRAN.R-project.org/package=lime.
Ihaka, Ross. 1998. “R: Past and Future History.” Computing Science and Statistics 30: 392–96.
Ihaka, Ross, and Robert Gentleman. 1996. R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics. Vol. 5. 3. Taylor & Francis.
Jalajakshi, V, and A N Myna. 2022. “Importance of Statistics to Data Science.” Global Transitions Proceedings 3 (1): 326–31.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2023. An Introduction to Statistical Learning: With Applications in r. 2nd ed. Springer.
Kalyan, Sudhaka. 2018. “Python Vs. R Programming Language.” International Journal of Management, IT and Engineering 8 (8): 70–79.
Kassambara, Alboukadel, and Fabian Mundt. 2020. “Factoextra: Extract and Visualize the Results of Multivariate Data Analyses.” https://CRAN.R-project.org/package=factoextra.
Kuhn, and Max. 2008. “Building Predictive Models in r Using the Caret Package.” Journal of Statistical Software 28 (5): 1–26. https://doi.org/10.18637/jss.v028.i05.
Kumar, A., and A. Paul. 2016. Mastering Text Mining with r. Packt Publishing.
Kwartler, T. 2017. Text Mining in Practice with r. Wiley.
Lawson, J. 2014. Design and Analysis of Experiments with r. Chapman & Hall/CRC Texts in Statistical Science. CRC Press.
Liaw, Andy, and Matthew Wiener. 2002. “Classification and Regression by randomForest” 2: 18–22. https://CRAN.R-project.org/doc/Rnews/.
Luraschi, Javier, Kevin Kuo, Kevin Ushey, JJ Allaire, Hossein Falaki, Lu Wang, Andy Zhang, Yitao Li, Edgar Ruiz, and The Apache Software Foundation. 2023. Sparklyr: R Interface to Apache Spark. https://CRAN.R-project.org/package=sparklyr.
Maechler, Martin, Peter Rousseeuw, Anja Struyf, Mia Hubert, and Kurt Hornik. 2022. “Cluster: Cluster Analysis Basics and Extensions.” https://CRAN.R-project.org/package=cluster.
Mailund, T. 2017. Beginning Data Science in r: Data Analysis, Visualization, and Modelling for the Data Scientist. Apress.
Meyer, David, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel, and Friedrich Leisch. 2023. “E1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien.” https://CRAN.R-project.org/package=e1071.
Ohri, A. 2017. Python for r Users: A Data Science Approach. Wiley.
Paradis, E. 2020. Population Genomics with r. CRC Press.
Pedersen, Thomas Lin. 2022. “Ggraph: An Implementation of Grammar of Graphics for Graphs and Networks.” https://CRAN.R-project.org/package=ggraph.
Proellochs, Nicolas, and Stefan Feuerriegel. 2020. “ReinforcementLearning: Model-Free Reinforcement Learning.” https://CRAN.R-project.org/package=ReinforcementLearning.
R Project. 2023a. “Conferences on r.” https://www.r-project.org/conferences/.
———. 2023b. “Help on r.” https://www.r-project.org/help.html.
Selivanov, Dmitriy, Manuel Bickel, and Qing Wang. 2023. “Text2vec: Modern Text Mining Framework for r.” https://CRAN.R-project.org/package=text2vec.
Silge, J., and D. Robinson. 2017. Text Mining with r: A Tidy Approach. O’Reilly Media.
Silge, Julia, and David Robinson. 2016. “Tidytext: Text Mining and Analysis Using Tidy Data Principles in r” 1. https://doi.org/10.21105/joss.00037.
Singh, A. K., and D. E. Allen. 2016. R in Finance and Economics: A Beginner’s Guide. World Scientific Publishing Company.
Spedicato, Giorgio Alfredo. 2017. “Discrete Time Markov Chains with r” 9. https://journal.r-project.org/archive/2017/RJ-2017-036/index.html.
Stack Overflow. 2023. “R Language Collective on Stack Overflow.” https://stackoverflow.com/collectives/r-language.
Stan Development Team. 2023. RStan: The r Interface to Stan.” https://mc-stan.org/.
Tahsin, Anika, and Md. Manzurul Hasan. 2020. “Big Data & Data Science: A Descriptive Research on Big Data Evolution and a Proposed Combined Platform by Integrating r and Python on Hadoop for Big Data Analytics and Visualization.” In Proceedings of the International Conference on Computing Advancements. ICCA 2020. New York, NY, USA: Association for Computing Machinery.
Thaichon, P., and S. Quach, eds. 2022. Artificial Intelligence for Marketing Management. 1st ed. Routledge.
Tippmann, Sylvia. 2015. “Programming Tools: Adventures with r.” Nature 517: 109–10.
Tuffery, S. 2023. “Deep Learning: From Big Data to Artificial Intelligence with r: Deep Learning for Natural Language Processing.”
Ushey, Kevin, JJ Allaire, and Yuan Tang. 2023. “Reticulate: Interface to ’Python’.” https://CRAN.R-project.org/package=reticulate.
Venables, W. N., and B. D. Ripley. 2002. “Modern Applied Statistics with s.” https://www.stats.ox.ac.uk/pub/MASS4/.
Venables, W., and B. D. Ripley. 2013. S Programming. Statistics and Computing. Springer New York.
Wickham, Hadley. 2016. “Ggplot2: Elegant Graphics for Data Analysis.” https://ggplot2.tidyverse.org.
Wickham, H., and G. Grolemund. 2016. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. O’Reilly Media.
Wijffels, Jan. 2021. “Doc2vec: Distributed Representations of Sentences, Documents and Topics.” https://CRAN.R-project.org/package=doc2vec.
Wijffels, Jan, and Kohei Watanabe. 2023. “Word2vec: Distributed Representations of Words.” https://CRAN.R-project.org/package=word2vec.
Zbicki, R. E., and T. M. dos Santos. 2020. Aprendizado de Máquina: Uma Abordagem Estatística. 1st ed.